GraP: platform for functional genomics analysis of Gossypium raimondii

نویسندگان

  • Liwei Zhang
  • Jinyan Guo
  • Qi You
  • Xin Yi
  • Yi Ling
  • Wenying Xu
  • Jinping Hua
  • Zhen Su
چکیده

Cotton (Gossypium spp.) is one of the most important natural fiber and oil crops worldwide. Improvement of fiber yield and quality under changing environments attract much attention from cotton researchers; however, a functional analysis platform integrating omics data is still missing. The success of cotton genome sequencing and large amount of available transcriptome data allows the opportunity to establish a comprehensive analysis platform for integrating these data and related information. A comprehensive database, Platform of Functional Genomics Analysis in Gossypium raimondii (GraP), was constructed to provide multi-dimensional analysis, integration and visualization tools. GraP includes updated functional annotation, gene family classifications, protein-protein interaction networks, co-expression networks and microRNA-target pairs. Moreover, gene set enrichment analysis and cis-element significance analysis tools are also provided for gene batch analysis of high-throughput data sets. Based on these effective services, GraP may offer further information for subsequent studies of functional genes and in-depth analysis of high-throughput data. GraP is publically accessible at http://structuralbiology.cau.edu.cn/GraP/, with all data available for downloading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and perf...

متن کامل

Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of...

متن کامل

Genome-Wide Survey and Expression Analysis of Calcium-Dependent Protein Kinase in Gossypium raimondii

Calcium-dependent protein kinases (CDPKs) are one of the largest protein kinases in plants and participate in different physiological processes through regulating downstream components of calcium signaling pathways. In this study, 41 CDPK genes, from GrCPK1 to GrCPK41, were identified in the genome of the diploid cotton, Gossypium raimondii. The phylogenetic analysis indicated that all these ge...

متن کامل

A global assembly of cotton ESTs.

Approximately 185,000 Gossypium EST sequences comprising >94,800,000 nucleotides were amassed from 30 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including drought stress and pathogen challenges. These libraries were derived from allopolyploid cotton (Gossypium hirsutum; A(T) and D(T) genomes) as well as its two diploid progenitors, Gossypium arb...

متن کامل

Comparative analysis of Gossypium and Vitis genomes indicates genome duplication specific to the Gossypium lineage.

Genetic mapping studies have suggested that diploid cotton (Gossypium) might be an ancient polyploid. However, further evidence is lacking due to the complexity of the genome and the lack of sequence resources. Here, we used the grape (Vitis vinifera) genome as an out-group in two different approaches to further explore evidence regarding ancient genome duplication (WGD) event(s) in the diploid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015